Algebraic Geometry, Part II, Example Sheet 4,2019

Assume throughout that the base field k is algebraically closed. If it helps, feel free to assume throughout that it has characteristic zero.

- 1. A smooth irreducible projective curve V is covered by two affine pieces (with respect to different embeddings) which are affine plane curves with equations $y^2 = f(x)$ and $v^2 = g(u)$ respectively, with f a square-free polynomial of even degree 2n and u = 1/x, $v = y/x^n$ in k(V). Determine the polynomial g(u) and show that the canonical class on V has degree 2n 4. Why can we not just say that V is the projective plane curve associated to the affine curve $y^2 = f(x)$?
- 2. Let $V_0 \subset \mathbb{A}^2$ be the affine curve with equation $y^3 = x^4 + 1$, and let $V \subset \mathbb{P}^2$ be its projective closure. Show that V is smooth, and has a unique point Q at infinity. Let ω be the rational differential dx/y^2 on V. Show that $v_P(\omega) = 0$ for all $P \in V_0$, prove that $v_Q(\omega) = 4$ and hence that ω , $x\omega$ and $y\omega$ are all regular on V.
- 3. Let V be a smooth irreducible projective curve and $P \in V$ any point. Show that there exists a nonconstant rational function on V which is regular everywhere except at P. Show moreover that there exists an embedding $\phi: V \longrightarrow \mathbb{P}^n$ such that $\phi^{-1}(\{X_0 = 0\}) = \{P\}$. In particular, $V \setminus \{P\}$ is an affine curve. If V has genus g, show that there exists a nonconstant morphism $V \to \mathbb{P}^1$ of degree g.
- 4. Let P_{∞} be a point on an elliptic curve X (smooth irreducible projective curve of genus 1) and $\alpha_{3P_{\infty}} : X \xrightarrow{\sim} W \subset \mathbb{P}^2$ the projective embedding, with image W. Show that $P \in W$ is a point of inflection if and only if 3P = 0 in the group law determined by P_{∞} . Deduce that if P and Q are points of inflection then so is the third point of intersection of the line PQ with W.
- 5. Let $V : ZY^2 + Z^2Y = X^3 XZ^2$ and take $P_0 = (0 : 1 : 0)$ for the identity of the group law. Calculate the multiples $nP = P \oplus \cdots \oplus P$ of P = (0 : 0 : 1) for $2 \le n \le 4$.
- 6. Show that any morphism from a smooth irreducible projective curve of genus 4 to a smooth irreducible projective curve of genus 3 must be constant.
- 7. (Assume char(k) \neq 2) (i) Let $\pi: V \to \mathbb{P}^1$ be a hyperelliptic cover, and $P \neq Q$ ramification points of π . Show that $P Q \neq 0$ but $2(P Q) \sim 0$.

(ii) Let g(V) = 2. Show that every divisor of degree 2 on V is linearly equivalent to P + Q for some $P, Q \in V$, and deduce that every divisor of degree 0 is linearly equivalent to P - Q' for some $P, Q' \in V$.

(iii) Show that if g(V) = 2 then the subgroup $\{ [D] \in Cl^0(V) \mid 2[D] = 0 \}$ of the divisor class group of V has order 16.

- 8. Show that a smooth plane quartic is never hyperelliptic.
- 9. Let V: X₀⁶ + X₁⁶ + X₂⁶ = 0, a smooth irreducible plane curve. By applying the Riemann–Hurwitz formula to the projection to P¹ given by (X₀ : X₁), calculate the genus of V.
 Now let φ: V → P² be the morphism (X_i) ↦ (X_i²). Identify the image of φ and compute the degree of φ.
- 10. Let $V \subset \mathbb{P}^3$ be the intersection of the quadrics Z(F), Z(G) where char(k) = 0 and

$$F = X_0 X_1 + X_2^2, \quad G = \sum_{i=0}^3 X_i^2$$

(i) Show that V is a smooth curve (possibly reducible).

(ii) Let $\phi = (X_0 X_1 X_2) \colon \mathbb{P}^3 \to \mathbb{P}^2$. (This map is the projection from the point $(0 \ 0 \ 0 \ 1)$ to \mathbb{P}^2 .) Show that $\phi(V)$ is a conic $C \subset \mathbb{P}^2$. By parametrising C, compute the ramification of ϕ and show that $\phi \colon V \to C$ has degree 2. Deduce that V is irreducible of genus 1.